
Developing Applications to
Compare Methods of Teaching

Emotions

Elizabeth "Lizzie" Siegle

An Undergraduate thesis submitted in partial
fulfillment for the

degree of Bachelor of Arts

in the

Computer Science Department of
Bryn Mawr College

Advisor: Professor John Dougherty
April 2018

1

Abstract

The ability to identify and respond to emotions via facial expressions relates
to many aspects of people’s lives. Thus, we have developed a series of web
applications and an accompanying iOS application to support emotion recognition
in order to ultimately help people succeed socially and professionally. Each web
application uses a different form of graphic (static image, animated gif, or video)
and has multiple levels where different types of questions are asked. The questions
are meant for people who have Autism Spectrum Conditions (ASC) because studies
have shown those with ASC have trouble recognizing and responding to emotional
states in others’ facial expressions. We compared users’ answers for different
sections in the web applications to see which form of graphic is most effective in
teaching emotions in applications.

Acknowledgements
I wish to express my sincere gratitude to Professor John Dougherty for advising my
senior project since September 2017, Haverford Digital Scholarship Librarian and
Visiting Professor Andy Janco for his assistance with Django and Digital Ocean,
and Professor Dianna Xu for supervising me throughout the Spring semester on my
thesis in Senior Seminar and also for pushing me in her 2016 Computer Graphics
course.

Next, I wish to thank my parents, brother, and grandmother for their uncondi-
tional love and support.

I also want to thank the Twilio Developer Network for welcoming me into their
family and providing technical support and best wishes both remotely and in the
new New York office.

Additionally, I would like to thank Tomomi Imura and Bear Douglas for being
the best engineering mentors, sponsors, moms, and friends I could ever hope for
and aspire to be.

Lastly, I am very grateful for the unwavering nurturing and empowering atmo-
spheres of the Bryn Mawr and Haverford computer science departments throughout
these past four years. They have helped shape my future in so many positive ways
I never could have imagined, and I am both a better person and developer because
of them.

1

Contents
1 Introduction 4

1.1 Motivation . 4
1.2 Solution . 5
1.3 Goals . 6

2 Background 8
2.1 Emotions . 9
2.2 Teaching Social Skills . 9
2.3 Prior Work and Research . 9
2.4 Related Technical Solutions . 11

3 Web Application Development 12
3.1 First Web Application Version 12
3.2 Current Web Application . 14
3.3 Dynamic Pages and Servers . 15
3.4 Web Application Design . 17
3.5 Serving Static Files in Django 17
3.6 Additional External APIs . 17

4 iOS Application 20
4.1 Additional APIs . 21
4.2 Data Visualization . 22

5 Technical Challenges 23
5.1 Django . 23
5.2 Database . 24
5.3 Data Visualization . 24

6 Testing the Applications 26
6.1 User Backgrounds . 26
6.2 Hypothesis . 27
6.3 User Testing Results . 27
6.4 Possible Explanations of Results 30

7 Conclusion 32
7.1 Future Work . 33

A Micro-Expression 35

2

B AutismXpress 37

C Digital Ocean 38

D Google Form 39

E Django Form 40

F Django Login 41

G Bootstrap in Django Application 43

H PubNub and Cloudinary in Static Image Web Application Level One 44

I Guess Thinking level of Video Web application 47

J Swift Result ViewController 54

K Firebase Database 56

L Swift Question ViewController 57

M Firebase in Swift 62

N Swift Podfile 63

3

CHAPTER 1

INTRODUCTION

Social cognition is a complex process where individuals acquire, understand, and
use social knowledge to quickly and accurately respond to verbal and nonverbal
social information. Studies have shown that social cognition is extremely important
in human relationships.[8] Understanding how to garner, maintain, and apply
information about other people and social situations can lead to success in many
aspects of one’s life.

1.1 Motivation
Autism is used to describe a variety of "symptoms that span across an individual’s
sensory, cognitive, motor, language, and social-emotional development".[4] Those
all contribute to personal development, regardless of whether or not someone is
diagnosed with Autism Spectrum Conditions (ASC), which are often associated
with social interaction deficiencies involving communication and stereotypical
repetitive behaviors or habits, like rocking and hand-flapping.[10]

There used to be distinct forms of Autism that could be diagnosed, but changes
were made to the Statistical Manual (DSM) around 2013 so that Autistic Disorder,
Asperger’s Disorder, Pervasive Developmental Disorder-Not Otherwise Specified
(PDD-NOS) and Childhood Disintegrative Disorder (CDD) are now merged into
one diagnosis called Autism Spectrum Disorder (ASD).1 [1] Despite this, many

1In this paper, we will use ASC "in recognition that the term ’disorder’ is often felt to be
stigmatizing and pejorative, whilst the term ’condition’ indicates this is a biomedical issue severe
enough to warrant a diagnosis; but the term ’condition’ recognizes both the disabling aspects of
autism (social-communication disability) as well as the aspects of autism that are simply different
(nicely captured by the term ’neurodiversity’)." [26]

4

still consider Asperger Syndrome/High Functioning Autism (AS/HFA) to be a
milder form of Autism, often characterized by lack of social cognition and a deficit
of social knowledge. This may be a reason why people diagnosed with AS/HFA
are oftentimes behind their more social-thinking peers in terms of functioning in
social situations.[8] Being behind in social situations often leads to being behind in
other ways and situations. [12] Improving social cognition and helping one acquire
social skills can change that.

Social skills are a behavioral manifestation of social cognition. Having a social
cognitive deficit means one has social difficulties in the initiation of communication,
listening to and processing subtle sensitive cues, abstract and inferential thinking,
understanding the perceptions of others, gestalt processing, and/or humor.[2]
Individuals with AS/HFA, or anyone with a social cognitive deficit, are thus limited
in the jobs, environments, activities, and opportunities available to them because
many social situations with other people would make them uncomfortable: they
would not understand some of what was happening around them, and others would
not understand what they were doing or why they were reacting in the way they
were. This is why it is important to teach everyone about social cognition.

Because the number of computing technologies and software applications
that make ubiquitous learning possible are growing, [16] that is how we will
address this problem of teaching social cognition, particularly through non-verbal
communication.

1.2 Solution

Our project is the development of a series of web applications and an accompanying
iOS application to make the teaching of emotions more accessible to everyone–
regardless of whether or not they have ASC or a social cognition deficit.

There are three web applications with the same questions and possible answer
choices, but the applications differ by the type of graphic displayed for each
question. One has static images of faces displaying different emotions, one has
short silent gifs of faces displaying different emotions, and one has a short video
with sound showing faces that display different emotions. The gifs are animated
sequences of static images, which move together to make a quick, soundless
video that automatically repeats over and over. Users have to click the "replay"
button to replay the video. The questions, question order, possible answers, and
possible answer orders remain the same across applications to best compare which
application’s media type the user scores better on. Their score is based on the
number of questions they get right.

Our hope for this project is that it addresses this problem of individuals lacking
social knowledge by digitizing and gamifying the teaching of social skills through

5

application development, which we will go into greater detail in Section 4 on the
technical methodology used.

We decided to focus on the web platform where not much development has
been done for people with ASC. We believe the web platform is more accessible
to users of different socioeconomic backgrounds than on mobile since people are
more likely to have access to a public library with computers than a smart phone.
Thus, anyone and everyone can learn the skills needed to be comfortable in most
social environments.

Primarily developing for the web is just one way that our project differs from
work that is already publicly-accessible. Additionally, many other applications
include some sort of graphic like a static image or video, but none we have seen
include static images, animation, and video, so that is one other way ours stand out.
In terms of content, our questions and corresponding answer choices are extremely
basic, inspired by the Stanbridge Academy poster in Figure 2.0 as well as sample
questions we found online. Our project also has different levels of questions to
test different aspects of emotion recognition, growing in difficulty. We can still
compare which graphic type the user performs better on. Our corresponding small
iOS application is a nice addition, linking two platforms and making our project
even more accessible to a variety of users. Lastly, our applications also differ
from others already out on the App Store in that they use different technologies
(particularly in terms of APIs used), which we will go into more detail about later
in Section 4.6.

The focus of our overall project has primarily been on our applications’ func-
tions. Much of our time has been spent researching and implementing different
backend technologies to best develop a fully-functioning series of applications to
receive and save user input on both web and iOS platforms. Our next focus has been
on making these applications accessible to users. This was reflected in our choice
of platforms, APIs, and technologies used, as well as –to some extent– the design.
Our minimalist design is meant to be easy to understand with minimal instruction
for users. Additionally, our primary focus was on application development and
comparing results, so a simple design allowed us to do that.

1.3 Goals

After using these applications, we hope users could see improvement in interper-
sonal relationships, various interactions, and social skills; however, this is difficult
to measure. We developed our applications to target skills like awareness of feel-
ings, recognition of non-verbal communication, and starting a conversation or
making small talk.

This is like how studies with ASC/HFA children measure progress and results.

6

They target the same skills as well as others like politeness, introducing oneself to
others, maintaining a conversation, ending a conversation, making small talk, nego-
tiating with others, responding to teasing and bullying, hygiene, dining etiquette,
and dating etiquette. [8]

7

CHAPTER 2

BACKGROUND

Linguists believe each distinct language has two sublanguages. Expressive lan-
guage encodes messages by translating them into words or other symbols and
receptive language decodes messages so that their meanings are accurately under-
stood with their intended meanings. [12] This means that speaking and writing
words is expressive and understanding those words is receptive. Communicating
how one internally feels via emotions is a form of expressive nonverbal language.
Albert Mehrabian studied face-to-face interactions of a wide range of people and
found that fifty-five percent of a message’s emotional meaning is conveyed through
physical means like the face, posture, or gestures, whereas the other thirty-eight
percent of a message’s emotional meaning is conveyed through voice tone. Words
contribute to a mere seven percent of a message’s emotional meaning. [12] These
studies show the importance of nonverbal communication and social cognition
in understanding how someone is feeling and what they are thinking: correctly
identifying and reacting to facial, postural, and gestural means can make one more
welcomed, respected, and wanted by those around them. Conversely, incorrectly
seeing or reacting to facial, postural, and gestural means could result in misun-
derstandings from failure to interpret nonverbal messages correctly or failure to
accurately reflect feelings non-verbally. [12] Furthermore, recent surveys show that
the average person spends less than forty minutes a day communicating verbally
with others. [12] 1 These studies and statistics show the value of learning how to
recognize and interpret emotions.

1This does not mean they are not communicating at all: they are merely communicating
non-verbally as well.

8

2.1 Emotions

The emotions we chose to teach are the basic emotions advocated by Ekman,
Friesen, and Ellsworth: anger, disgust, fear, joy, sadness, and surprise. These
emotions differ in multiple ways from the basic emotions advocated by other
researchers and psychologists. The main reason we chose them is that Ekman
did extensive work with emotions and people with Autism, as mentioned in The
Development of Emotion Recognition in Individuals with Autism.[9] There is no
authoritative list of basic emotions and different people believe that are different
sets of basic emotions.

2.2 Teaching Social Skills

Related to social cognition is the concept of "Social Thinking" which emphasizes
teaching and studying the reasoning behind socialization without directly focusing
on specific social skills. [8] In other words, social thinking is a way to make one’s
brain better in gauging the people in one’s environment. [15] Our project will focus
on both social cognition and Social Thinking to teach emotions to our application
users.

Much research has been conducted to show the benefits of using visual aides
with people with Autism as well as those without disabilities. This is because
visual images "(a) can make abstract verbal concepts more concrete, (b) remain
stable over time, while auditory information can be missed as students’ attention
fluctuates, and (c) provide a more powerful means to engage attention." [4] Those
who work with people with Autism have taken note, often deciding to use visual
aides in lesson plans.

2.3 Prior Work and Research

Fortunately, studies have shown that social skills can be taught. [8] Figure 2.0 is
an image of a poster in a classroom at Stanbridge Academy, a kindergarten-high
school for students with mild to moderate learning differences and social commu-
nication disorders in San Mateo, California. [21]

Figure 2.0 shows an image of a smiling person with answer choices of emo-
tions that could be expressed in the image. This poster is one example of the
recommended structured, clear, and simple educational approach with explicit
teaching. [25] Similarly, many books like Dr. Jed Baker’s The Social Skills Picture

9

FIGURE 2.1: Fig. 2.0 Stanbridge Academy poster

Book and The Social Skills Picture Book for High School and Beyond help teach
what is appropriate or inappropriate to say in different situations.

Figure 2.05 Page from The Social Skills Picture Book for High School and Beyond

10

Figure 2.05 shows a page from one of those books. They provide example
situations where readers learn when to make supportive statements, to be funny or
not, to introduce oneself, how to start a conversation with someone they know as
well as someone they do not know, where to sit or stand in relation to other people;
how to handle difficult situations, interrupt a conversation politely, or make new
friends or work in a group; and more. [5] These are situations some people take for
granted, but many others, regardless of whether or not they have been diagnosed
with Autism, could use assistance with.

2.4 Related Technical Solutions
Much technical work that has been done to teach emotions, idioms, sign language,
vocational skills, language comprehension, and more has been based on prior social
thinking research. [7] Some similar applications include BodyLanguage, which
guides users on how to gesticulate, greet people, and remain calm while considering
what their body language conveys.[7]Another iOS application that teaches emotions
is AutismXpress, shown in Appendix B. The user chooses one of twelve faces
expressing a basic feeling to see a fun animation and hear a sound effect that is
associated with the feeling. Micro-Expression Trainer (shown in Appendix A)
shows users what an emotion looks like and explains facial features that match
said expression. It focuses on what it believes to be the seven universal emotions:
anger, contempt, disgust, fear, happiness, sadness, and surprise. Notably, Micro-
Expression Trainer costs $3.99 and lacks sound, thus hindering its accessibility
to users. TouchLearn is an iOS and iPad application that displays four faces
with different emotions, and the user must select the face that matches the given
emotion.[24] Another iOS and iPad application available to the public is Avokiddo
Emotions, which is more interactive, geared towards younger children. It involves
dressing up animals and seeing their reactions to different actions like being poked,
hearing an alarm, dancing, and more. [3] A third iOS and iPad application available
to the public is Emotionary which guides users through five core emotions, helping
them learn more specific ones based on one of those five primary ones. [13]

Speech Language Pathologist Lois Jean Brady advocates for "iTherapy", or the
usage of Apple products like the iPhone, iPad, or iPod Touch and iOS applications
to help students, both ones with and without Autism, to achieve their personal
educational goals. [7] She points out that Apple products support applications
involving voice output, text-to-speech, sign language, sentence generation, and
other forms of communication to help gamify and reinforce repetition and usage,
making learning fun for students and people of all ages and backgrounds. This
might be a large reason that much of the prior work done to teach emotions is on
the iOS platform.

11

CHAPTER 3

WEB APPLICATION
DEVELOPMENT

The core of our project is the web application: it required more work as we had
less experience with Django and Digital Ocean and was more complicated because
iOS development does not require hosting. It was also easier to have users visit the
URL than it was to load our iOS application onto multiple phones.

3.1 First Web Application Version
First, we drew out a paper prototype of the design and screen flow (how a user can
reach different screens. That initial prototype showed what the homepage would
look like, what buttons would go where, and where each button would transition to.
Figure 4.1 shows our first sketch of the flow, including what was the whole project
at the time.

12

Figure 4.1 Our initial drawing of the flow of one application, October 2017

From there, we began developing static web pages in HTML, CSS, JavaScript,
and jQuery (which we will look at more in the next section) that ran locally on our
machines.

Static web pages almost solely use client-side languages. This was suitable
for testing each application, but saving answers from the web pages proved diffi-
cult. In November 2017, we found a script on Rails Rescue blog [19] that could
save responses to a Google Form. First, we parsed the input for the form names:
var $inputs = $form.find("section, question, answer");

Then, we serialized the data in the form with:

var serializedData = \$form.serialize();

13

Lastly, we sent an ajax request to our Google Form’s URL with the parsed answers
we just serialized. This is a reference to appendix D2.

Answers were being saved to a Google Form as early as October, but that
method was inconsistent in terms of effectiveness. The answers did not always
save in the correct question order, and there were sometimes blank spots. For
example, questions two and four would save but question three would not.

3.2 Current Web Application

The current user interface (UI) design of these applications is very simple and
has not changed much since the initial design. After clicking the submit button,
the user is taken to a page that shows a gif and a graphic based on the number
of answers the user got correct (as in figure 4.61.) After three levels, the user is
directed to the next web application (first static images, then silent gifs, and lastly
videos with sound.) Example questions from screens from the static image web
application are shown in figures 3.41-3.43.

Figure 3.41 Figure 3.42

14

Figure 3.43

3.3 Dynamic Pages and Servers

In order to better save answers, we decided to make our web pages dynamic rather
than static. Code for dynamic web pages is written in a server-side language like
Python, and we needed a server to save our answers to. We will always be able to
change the design of the web pages by changing the CSS or changing the Django
template, but for the most part, the backend code of the dynamic pages and servers
will remain the same.

In order to make the web pages dynamic, we converted our web applications
to Django. Django is a free and open-source Python web framework that handles
dynamic web actions related to servers such as user authentication and forms, as
shown in Figure 3.44. [27] We initially wrote a lot of JavaScript and jQuery code
to do that, but the Django Form let us write less code to ensure that users answered
every question so we deleted the initial JavaScript and jQuery code. The Python
code for the Django Form in Figure 3.44 can be viewed in Appendix E

15

Fig. 3.44 Django Form

This helped us get the web application hosted on Digital Ocean, a cloud
computing platform which makes the application accessible by anyone in the
world. More specifically, this project is deployed to the world wide web on Digital
Ocean droplets, which are cloud servers for personal use.[11] For more information
on Digital Ocean, refer to appendix C.

Some of our client-side code still worked like in HTML, CSS, JavaScript, and
jQuery, but we added Python code to use Django views, forms, and templates. Any-
one can view and partake in this project by visiting http://esiegle.digital.brynmawr.edu/
in their browser. 1

1Google Chrome will say "Deceptive site ahead. Attackers on 104.131.74.54 may trick you
into doing something dangerous like installing software or revealing your personal information (for
example, passwords, phone numbers, or credit cards)." Move past this warning page by clicking
details followed by then visit this unsafe site each time it pops up, which will be exactly three times.

16

3.4 Web Application Design

We used Bootstrap, a "free front-end framework for faster and easier web develop-
ment" that "includes HTML and CSS based design templates for typography, forms,
buttons, tables, navigation, modals, image carousels and...optional JavaScript plu-
gins" [6] Bootstrap let us write less code for design. Then, the web pages are
rendered in Django.

Django has a built-in login system that we used to register users, who create
a username and password to sign-in to use the web applications. Django Forms
are used to receive background information (like username, email, password, age,
and more) from the user on the first page, handling automatic form verification
for us and checking that each question is answered. For each question about
emotions, the answer options are represented by HTML radio buttons, and the
answer responses are saved using jQuery, a JavaScript library allowing for easy
use of HTML document traversal and manipulation, event handling, animation,
and Ajax, working across various browsers. [17] In other words, jQuery makes it
easy to access the HTML webpage in JavaScript when communicating between
both the client and server sides.

3.5 Serving Static Files in Django

The transition from the initial design of the static website that saved data with the
Google Form to the Django web application was not seamless because Django
apps must contain a special section solely for static files. In a folder called static,
we had to place all of our styling code (CSS). Then, we connected that code to
each web page or each template with code similar to the snippet in appendix G.
This particular code snippet is from a template file called base_generic.html. Many
of our pages inherit from this file so that they all have a consistent design and many
of the same features. This is one of Don Norman’s six design principles. [18] He
is the director of The Design Lab at University of California, San Diego and is
well-known for writing The Design of Everyday Things. Inheriting from one file
also reduces the amount of code written, as shown in appendix G.

3.6 Additional External APIs

We both write data to and retrieve data from a Google Firebase database. The
answers from the radio buttons are saved there. This "cloud-hosted NoSQL
database...lets you store and sync data between your users in realtime", providing
real-time syncing for the radio button answers once they are converted to JSON

17

data.[14] We decided to use Firebase over other database services because of its ex-
tensive documentation, ease of use for cross-platform applications (time-permitting,
the web applications will sync with iOS applications), and ease of use for smaller
applications and prototypes. Additionally, according to the 2018 StackOverflow
developer survey, Firebase is used by 14.5% of all developers and is the ninth
most popular platform, ahead of Azure, Heroku, and the rest of the Google Cloud
Platform. [20] This is why we used Firebase over other database services like
MongoDB and MySQL.

Each level is on one web page to minimize the number of calls made to Firebase.
The user scrolls down to see each question for that level. Currently when a user
finishes a level, the submit button checks that each question is answered, and then
publishes the answers (which have been converted to JSON form to be read by
Firebase) to Firebase. The data will then also retrieve the data saved to display the
corresponding gif and chart based on the score for that level. Appendix K displays
how Firebase saves the answers for each separate level in the Firebase console
(accessible via the web.)

Specifically, we use the Python wrapper called Pyrebase as it comes with more
methods. We access the last answers saved on the last "submit" button clicked with
db.child(’static_part_1’).order_by_key().limit_to_first(1)
.get() where static_part_1 is the web page or level, order_by_key
kept the answers in the order they were clicked on the page, and limit_to_first(1)
returns just the answers submitted on the button click instead of all of the ones
underneath static_part_1.

We used other external APIs, too. One was Cloudinary, which provides APIs
for image and video manipulation, cloud storage, and file upload in the cloud
across platforms, to render and position gifs and videos in Django directly in our
web pages. Developers can not do that with CSS in Django applications. We also
used the Giphy API to render gifs based on the user’s score and PubNub’s EON
graph framework to render graphs showing the user’s score after each level.

Figure 4.6 displays a chart and gif based on the number of correct answers. A
sad gif is shown if the user’s score is low, an "okay" gif is shown if the user’s score
is alright, and a happy gif is shown if the score is good. The chart below shows the
number of questions they got correct: in this case, it is 100%.

18

https://azure.microsoft.com/en-us/
https://www.heroku.com/
https://cloud.google.com/
https://cloud.google.com/

Figure 4.6 Happy Gif and chart shown based on answers (6/6 correct)

In summary, the languages and libraries we have implemented so far are Python,
JavaScript, HTMl, and CSS. The external libraries, APIs, and services we are using
include Firebase database, Digital Ocean for servers, Cloudinary API, PubNub,
Giphy, and the Django web framework.

19

CHAPTER 4

IOS APPLICATION

No external users have tested the iOS application1 because their iOS devices would
need to be hooked up to our personal MacBook to download it. Instead, we tested
it in the XCode Simulator and on our personal iOS device. It is still currently in
development with additional levels and graphic types being added on. The iOS
application was also much technically simpler because there were no servers or
hosting involved. The design of the iOS application is similar to that shown in
Figure 3.41 in that each screen of the iOS application is one question. This is
shown in Figure 5.1, and the code for one ViewController is in Appendix L.

1The complete Swift code can be viewed at https://github.com/elizabethsiegle/ios_teach_emotions.

20

Figure 5.1 One question about "guess their emotion" in iOS application

4.1 Additional APIs

The iOS application saves data to the same Firebase database as the Django web
application, but under a different child node. The design is roughly the same as
the web applications, such that the background is the same color and the images
are centered. Additionally, images are rendered locally in Swift, so usage of the
Cloudinary API is unnecessary. APIs and libraries used are included in our iOS
application’s Podfile. Podfile code included in Appendix N. This includes Firebase,
so that the iOS answers from each radio button is saved to Firebase with code
similar to this, which saves question one of the "guess emotion" level in the the
static image section. That Firebase code is included in Appendix M.

21

4.2 Data Visualization
The data visualizations are rendered with SwiftCharts, an open-sourced customiz-
able charts library for iOS development. SwiftCharts offers the chance to customize
bar charts (plain, stacked, grouped, horizontal, vertical), scatter, line, and other
types of charts. [22] This is shown in Figure 5.2, with a gif based on if the user got
the answer correct for that question or not. Code for that is included in Appendix J.

Figure 5.2 Swift Charts and Corresponding Gif

22

CHAPTER 5

TECHNICAL CHALLENGES

Most of the challenges we faced were in backend technologies we had never used
before or in getting the design just right.

5.1 Django

We had never used Django before so much time was spent learning it and working
to convert web applications to run on Django. A large challenge of using Django
was that when we tried to convert our first static web pages to Django, images
rotated ninety degrees. They could not be rotated back with CSS, so we spent much
time Figuring out how to rotate them, like with CSS, JavaScript, or a JavaScript
framework. This was solved by using the Cloudinary API, which displays an image
or video saved to their service and its resulting URL for the correctly-sized and
rotated image, as shown in Figure 6.0.

23

Figure 6.0 Cloudinary URL

Similarly, getting our web applications hosted on Digital Ocean required assis-
tance from Haverford Digital Scholarship Librarian and Visiting Professor Andy
Janco to get up-and-running.

5.2 Database
We encountered difficulties parsing the Pyrebase object that was returned after we
retrieved it from the Firebase database. We had to import json to call json.dumps
to convert that object into a string to compare answers.

Overall, writing and retrieving data to and from Firebase was easier to imple-
ment in Swift for iOS. For Django, it was tougher to retrieve data than it was to
write data to the database.

5.3 Data Visualization
Another small challenge we faced was how to create and render charts in Django.
There were roughly eighteen options, and none of them worked each time we tested
them.

24

The Django-GraphOS library worked for the first two levels (one of which is
shown in figure 0.9). However, we could not render the chart with the third level
of the static image application, and then the first two charts stopped rendering.
Sometimes even though all six questions were answered and pushed to Firebase,
and they were also successfully retrieved from Firebase, a dictionary key error
was produced on ’q4’, or question number four. This inconsistency of Django-
GraphOS as well as testing out each possible charting library or API took over
forty-eight hours before we finally decided to use PubNub’s EON chart framework
which rendered the chart from the client with JavaScript instead of the server with
Python. The PubNub EON visualization library was both free and immensely easy
to implement.

25

CHAPTER 6

TESTING THE APPLICATIONS

6.1 User Backgrounds

To test the applications, we asked volunteers at Bryn Mawr and Haverford Colleges
as well as acquaintances at other schools, including ones in high school and also
out of college. These subjects went through each question of the applications so
we could see which media questions users perform better on.

So far, no users have been on the Autism spectrum. By having users fill out a
form before they start, we have received some information about them like home
state, major, age, job, and more. Many users so far have been computer science
students, engineers, or prospective computer science students. However, users’
majors also included biology, chemistry, math, Philosophy, History, Economics,
Electrical Engineering, and French. The oldest user was a sixty-one year-old male
from San Francisco who works in City Hall and studied economics. Users hailed
from Pennsylvania, New Jersey, California, Oregon, New York, North Carolina,
and New Hampshire, as well as countries like China. One user identified as
non-binary.

There were twenty-three users who completed the static image application,
eight users who completed that in addition to the the animated gif application, and
four users who completed those two as well as the video application.

It is important to note that not every user made it to this third video application
because sometimes they received a dictionary error in the gif or static image section
upon clicking "submit" on a level; however, some did. The data saved to Firebase,
but an error page appeared, making many stop usage of the application. We told
one to go to the specific link of the video application, so one user accessed it that
way. We have been unable to determine why some users received that error page

26

and some did not, but it may be due to either one of the dictionaries used or one of
the many APIs used (which is ironic, because we selected specific APIs for their
reliability and up-time.) Instead, to make it work all of the time, we decided to use
a tuple or a string and parse the string. Some pages still use the dictionary and it
works, however.

6.2 Hypothesis

We hypothesized that users would perform the best on the video application because
a video gives more information, as opposed to one with a static image or a simple,
no-sound gif which is shorter and has less detail or background information. We
defined "performing best" as having the highest average score of all the users. We
do not think this will vary much by level or the type of question asked.

6.3 User Testing Results

Surprisingly, users performed best on the static image applications for each section
or level. They tend to perform worst on the video application.

For the first level of the static image application where users identified the
emotion displayed, every user got 100%.

For the second level of the static image section where users picked the phrase
the image could be thinking or might say, the majority of users selected the right
answers, but some began to mix up "sad" and "angry" or "sad" and "disgusted"
or "angry" and "disgusted" or "scared" and "sad." For question one, 57% users
correctly selected the statement corresponding to "angry" and 42.8% users in-
correctly chose the "sad" statement. Everyone got question two correct, where
the answer was "surprised." For question three, 64.3% users correctly identified
the "disgusted" statement whereas 28.6% of them mistakenly selected the "sad"
statement, and 7.1% users incorrectly selected the "angry" statement when the
answer was "disgusted." Every user answered question four correctly with "happy."
For question five, 93% users correctly identified the "sad" statement, whereas
7.1% incorrectly chose the "scared" statement. For question six, 93% users knew
the answer corresponded to "scared" but 7% incorrectly selected the "disgusted"
statement when the answer was "scared." These answers are reflected in figure
7.31, where the colors correspond to the questions (the correct answers are in the
key at the bottom) and colors correspond to the percentage of users who selected
the statement relating to a certain emotion.

27

Figure 7.31 User Answers for Section 2, static images app

For the third level of the static image section where users selected the phrase
they would say to the person in the image, most selected the correct answer.
For question one, 88.2% of users knew the statement was about being "angry"
but 11.8% of users mistakenly thought the answer was "scared." Every user got
question two correct, where the answer was "happy". For question three, 88.2%
of users correctly selected the "sad" answer, but 11.7% incorrectly thought the
answer corresponded to "angry." For question four, 94% of users knew the answer
was "disgusted" but 5.8% thought the answer was "angry." Every user correctly
identified "surprised" in question five. 94.12% of users in question six correctly
answered "scared". One outlier in that question selected the phrase correlating
to the "surprised" emotion when the correct answer was the phrase correlating to
"scared". This is not reflected in figure 7.32 below because we believe it to be a
mistake.

Figure 7.32 User Answers for Section 3, static images app

28

For the first level of the gif application, everyone got each question correct.

For the second level of the gif application, where users picked the phrase
the gif could be thinking or might say, everyone correctly identified the phrases
corresponding to "sad" or "scared." However, they mistook "sad" or "scared" for
"disgusted" in question three. For question one, 50% of users correctly identified
the statement relating to "angry" but 25% mistook it for "sad" and another 25%
mistook it for "scared." Every user correctly identified the "surprised" statement in
question two. In question three, 50% of users knew the statement was "disgusted"
but 25% mistook the answer for relating to "sad" as well as "scared." Each user
knew the correct statement in question four related to "happy", that the correct
answer to question five related to "sad," and that the correct answer in question six
related to "scared." These results are shown in figure 7.33.

Figure 7.33 User Answers for Section 2, gif app

For the third level of the gif application, users only mistook "sad" for "angry" in
question one. Other than that, everyone correctly answered questions two through
six where they had to identify the phrase they themselves should tell someone
based on the emotion that person was displaying in the image. This is displayed in
figure 7.34, where 12.5% of users mistook "angry" as being "sad" in question one.
This suggests that the animated gif graphic is better than the static image one at
teaching emotions.

29

Figure 7.34 User Answers for Section 3, gif app

For the first level of video with sound of identifying emotions, one user put
"scared" for the "surprised" emotion in question five. "Scared" was the answer to
the previous question. Because every other user got every question correct, and
this user got every other question correct, and no one else has mixed up "scared"
with "surprised," we believe this to be a mistake on the user who did not mean to
select this answer.

For the second level of video with sound, one user mixed up "angry" with "sad"
and, another mixed up "happy" with "surprised." This was unexpected because
"happy" and "surprised" had not been emotions that users seemed to mix up or
incorrectly identify.

For the third level of video with sound, one user mixed up "angry" with "sad".
Then, two other users put "scared" and "happy" when the correct answer correlated
to "surprised." This was extremely surprising because "surprising", up until then,
had not been mixed up with other emotions before.

6.4 Possible Explanations of Results

It is difficult to determine which form of graphic users scored better on. Perfor-
mance (surprisingly) definitely varied by level: just about every user correctly got
100% on the level where they had to identify the emotion shown. For the most
part, the emotions that were most mixed-up in the second and third levels included
"angry", "sad", "scared", and "disgusted." This could partially be explained by Car-
roll Izard, a pioneer in emotion studies, who believed anger, disgust, and contempt
to make the ’hostility triad.’ [23] Level two of the video application was where
"happy" and "surprised" seemed to get mixed-up by a few users.

30

These anomalies could also possibly be mistakes. We believed some errors to be
mistakes if the user had not previously made a mistake with a certain emotion, or if
the majority of users did not confuse certain emotions. We also were not physically
present to watch most users take the test, so we could not answer questions or see
what emotions they were displaying on their faces when they used the applications.

31

CHAPTER 7

CONCLUSION

This research on ASC and emotions taught me much about design, prototyping,
iterating, and working with new frameworks and libraries. I anticipate time spent
implementing Django, Firebase, Cloudinary, and Digital Ocean for web and iOS
applications will prove useful in the future both for work and side projects. I also
appreciate the importance of using my resources (e.g. time, support) to clean up
code and hone and acquire skills while developing applications.

In the future I would start the iOS application sooner so I could implement a
login system to sync not just databases, but accounts, with the Django application.
The iOS application ended up being a bonus project that connects to the same
database because I wanted to "flex my iOS development skills," in addition to
my web and Python development capabilities. However, the iOS application does
not sync fully with the web application. That is a desirable feature, along with a
basic Android prototype application. I would also suggest learning Django first
before trying to use it too soon in the project, since (I believe) I would not make
multiple minimum viable products (MVPs), or applications that had sufficient
features to satisfy early user testers. Then, I could have implemented Django forms
sooner instead of writing a lot of JavaScript and jQuery code to parse a user’s form
answers that did not end up being used.

After conducting user testing, it is difficult to conclude which form of graphic
is best for teaching emotions. Given the limited user testing we can make no
conclusions about the impact of various graphic forms on users with ASC.

We would use Firebase again in the future for both the web and iOS platforms
because it was easy to implement, there was a lot of tutorials and support online,
and it seemed to work well with everything. On the other hand, we would love to
find a substitute to Cloudinary, which had sub-par documentation.

32

We regret the limited testing of this prototype on such a specific population.
We should have started testing as soon as answers were being saved, but wanted
our project to look engaging and to have extra features. To get more conclusive ev-
idence next time, we would sit down with users to watch them use the applications
and take note of their facial expressions on different sections or questions. This
could easily be done on the iOS application with the iPhone’s ability to capture
actions on screen in settings.

Based on these results, we cannot confidently conclude that one graphic is
better than another in order to accomplish our goal of teaching emotions. Further
research should and will be conducted that expands the user base and the types of
evaluation employed.

7.1 Future Work
We hope to one day see our applications tested on people who have been diagnosed
with Autism. Future work should consider building on these applications to the
teaching of emotions and social skills in multiple ways. Other possible levels could
be added on to include questions about recognizing and identifying language like
sarcasm, idioms, metaphors, humor, or irony. Similarly, our iOS application (which
is incomplete at the moment) could have a login system, syncing with the web
version to let users pick up where they left off on their computers. Additionally,
we successfully implemented a video chat feature in the old static web application,
but have been unable to successfully merge it with the Django application so far.

Because identifying and responding to emotions through facial expressions
relates to many aspects of people’s lives, our web applications and accompanying
iOS application were developed to compare which form of graphic is most effective
in teaching emotions. Though much work has been done to make learning more
accessible via technology, there still is a long way to go both in our project and in
general.

33

Appendices

34

35

APPENDIX A

MICRO-EXPRESSION

Screen from Micro-Expression Trainer

36

APPENDIX B

AUTISMXPRESS

Screen from AutismXpress

37

APPENDIX C

DIGITAL OCEAN

This web project’s droplet can have backup versions in case one the droplet (server)
goes down, is configured with 1 GB memory. Readers, users, or anyone with
access to the internet, can visit the project at the following public network or IP
address: 104.131.74.54. We edit the project by SSH-ing on our local machine to
our Digital Ocean droplet.

38

APPENDIX D

GOOGLE FORM

request = $.ajax({
url:
"https://script.google.com/macros/s/AKfycbwWYK6rOZ4
XAF92hQcpnRkFWC8Gt3yEexTQEci_84GzFNek-2om/exec",
type: "post",
data: serializedData

});

39

APPENDIX E

DJANGO FORM

from django import forms
from django.contrib.auth.forms import UserCreationForm
from django.contrib.auth.models import User
from django.core.exceptions import ValidationError
from django.utils.translation import ugettext_lazy as _
import datetime #check renewal date range

class UserForm(UserCreationForm):
username = forms.CharField(max_length=30, required=True)
email = forms.EmailField(max_length=254, help_text =
’Required.’)
age = forms.IntegerField(label=’your age’)
gender = forms.CharField(label=’your gender’, max_length=15)
state = forms.CharField(label= ’state of residence’,
max_length=13)
job = forms.CharField(label=’your job’, max_length=45)
major = forms.CharField(label=’your college major’,
max_length=20)

class Meta:
model = User
fields = (’username’, ’email’, ’password1’, ’password2’,
’age’, ’gender’, ’state’, ’job’, ’major’,)

40

APPENDIX F

DJANGO LOGIN

{% extends "base_generic.html" %}
{% block content %}
<body style="background-color:rgb(255, 204, 204);text-align:center;">
{% if form.errors %}
<p>Your username and password didn’t match. Please try again.</p>
{% endif %}

{% if next %}
{% if user.is_authenticated %}
<p>Your account doesn’t have access to this page. To proceed,
please login with an account that has access.</p>
{% else %}
<p style="margin-top:10%;">Please login to see this page.</p>
{% endif %}

{% endif %}

<form method="post" action="{% url ’login’ %}">
{% csrf_token %}

<div>
<td>{{ form.username.label_tag }}</td>
<td>{{ form.username }}</td>

</div>
<div>

<td>{{ form.password.label_tag }}</td>

41

<td>{{ form.password }}</td>
</div>

<div>
<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next }}" />

</div>
</form>

{# Assumes you setup the password_reset view in your URLconf #}
<p>Lost password?</p>
<p> If you can’t login (password/username combo doesn’t work with
this Django form sometimes for some users), go to this
page instead.</p> {% endblock %}
</body>

42

APPENDIX G

BOOTSTRAP IN DJANGO
APPLICATION

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.7/css/bootstrap.min.css">
<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/
3.2.0/css/bootstrap-theme.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/
jquery.min.js"></script>
{% load staticfiles %} {% load static %}
<link rel="stylesheet" href="{% static ’css/styles.css’ %}">

43

APPENDIX H

PUBNUB AND CLOUDINARY IN
STATIC IMAGE WEB

APPLICATION LEVEL ONE

<html>
<head>

<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/
morris.js/0.5.1/morris.css">

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/
jquery.min.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/morris.js/0.5.1/
morris.min.js"></script>
<script type="text/javascript" src="https://www.google.com/
jsapi"></script>
<script type="text/javascript">
google.load("visualization", "1", {packages:["corechart"]});

</script>
<script src="http://yui.yahooapis.com/3.10.0/build/yui/
yui-min.js"></script>
{% load cloudinary %}

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/
jquery.min.js"></script>

44

{% cloudinary_includes %}
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css" rel="stylesheet"/>

<script type="text/javascript" src="//pubnub.github.io/eon/v/eon/
1.0.0/eon.js"></script>
<link type="text/css" rel="stylesheet" href="//pubnub.github.io/eon/
v/eon/1.0.0/eon.css" />
</head>

<body>
<p style=’text-align:center’>
{% if em == ’bad’ %}
<img src = ’http://res.cloudinary.com/lizziepika/image/upload/
v1521431294/facepalm_gif_ncaa.gif’/>
{% elif em == ’okay’ %}
<img src = ’http://res.cloudinary.com/lizziepika/image/upload/
v1521431452/thumbsup_gif.gif’/>
{% elif em == ’good’ %}
<img src = ’http://res.cloudinary.com/lizziepika/image/upload/
v1521431616/ncaa_amazing_gif.gif’/>
{% endif %}

</p>
<p style = ’text-align:center’>
Your score for that section was {{ score }} out of 6.
</p>
<div id="chart"></div>
<script>

var pubnub = new PubNub({
publishKey: ’pub-c-66cea3ee-3a34-4597-9ca5-e8c9d09be347’,
subscribeKey: ’sub-c-3f41da36-2b86-11e8-9322-6e836ba663ef’

});
setInterval(function(){

pubnub.publish({
channel: ’static_1’,
message: {
eon: {
’score’: {{score}}

}
}

});
}, 1000);

eon.chart({

45

pubnub: pubnub,
channels: ["static_1"],
generate: {
bindto: ’#chart’,
data: {
labels: true

}
}

});
</script>
{{ chart.as_html }}

<button class="btn btn-lg btn-block"
type="button">Next</button>
</body>

</html>

46

APPENDIX I

GUESS THINKING LEVEL OF
VIDEO WEB APPLICATION

{% extends "base_generic.html" %}
{% block content %}
<head>

<meta name="viewport" content="width=device-width,
initial-scale=1">
<title>Thesis project</title>
<meta property="og:title" content="Thesis"/>
<meta property="og:description" content="Lizzie’s Senior Thesis/>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css" rel="stylesheet"/>

<script src="https://www.gstatic.com/firebasejs/4.10.0/firebase.js">
</script>
<script src="https://www.gstatic.com/firebasejs/4.6.1/
firebase-database.js"></script>
<script>

// Initialize Firebase
var config = {

apiKey: "AIzaSyC6VFPqIsdF2BwR82O9zoGOAftdVgsR7NI",
authDomain: "mythical-envoy-138318.firebaseapp.com",
databaseURL: "https://mythical-envoy-138318.firebaseio.com",
projectId: "mythical-envoy-138318",

47

storageBucket: "mythical-envoy-138318.appspot.com",
messagingSenderId: "780186137580"

};
firebase.initializeApp(config);

</script>
</head>
<body>
<form action= "{% url ’save_vid_2’ %}" method="get">

<div class="question_box" style="text-align:center"><h3 class="h3">What might this girl say?</h3>
</br>
</br>
<div style = "text-align:center">

<video id="angry_sound_vid" loop autoplay>
<source src = "http://res.cloudinary.com/lizziepika/video/upload/
c_scale,eo_3.5,h_317,w_190/v1520373561/angrysoundvid.mp4"
type=’video/mp4’>
</video>
</br>
</br>
<input type="radio" name="vidtheysay1" id="happy"
value="happy">"I got an A on a tough math test!"</input>
<input type="radio" name="vidtheysay1" id="scared"
value="scared" >"I think I saw a daddy long legs oh my gosh"</input>

<input type="radio" name="vidtheysay1" id="angry"
value="angry">"MY FAVORITE TEAM LOST THAT BADLY!"</input>
<input type="radio" name="vidtheysay1" id="sad"
value="sad">"I had to skip the party for my little cousin’s
piano recital."</input>
</div>
</div>
</br>
</br>
<div class="question_box" style="text-align:center"><h3 class="h3">
What might this girl say?</h3>
</br>
</br>
<div style = "text-align:center">
<video id="surprised_sound_vid" loop autoplay>
<source src = "http://res.cloudinary.com/lizziepika/video/upload/

48

c_scale,h_317,w_190/v1520373537/surprisedsoundvid.mp4"
type=’video/mp4’>
</video>
</br>
</br>
<input type="radio" name="vidtheysay2" id="sad" value="sad">
"I don’t want to tell anyone what I got on that final exam."
</input>
<input type="radio" name="vidtheysay2" id="happy"
value="happy">"I just saw my favorite author at the
gas station!"</input>
<input type="radio" name="vidtheysay2" id="surprised"
value="surprised">"You’re serious? I got the right answer
by guessing?"</input>
<input type="radio" name="vidtheysay2" id="angry"
value="angry">"They called my friend weird!"</input>
</div>
</div>
</br>
</br>
<div class="question_box" style="text-align:center"><h3 class="h3">
What might this girl say?</h3>
</br>
</br>
<div style="text-align:center">

<video id="disgusted_sound_vid" loop autoplay>
<source src = "http://res.cloudinary.com/lizziepika/video/upload/

c_scale,h_317,w_190/v1520373532/disgustedsoundvid.mp4"
type=’video/mp4’>
</video>
</br>
</br>
<input type="radio" name="vidtheysay3" id="disgusted"
value="disgusted">"That is just absurd"</input>
<input type="radio" name="vidtheysay3" id="happy"
value="happy">"It was great catching up with my mentor, so
inspiring."</input>
<input type="radio" name="vidtheysay3" id="sad"
value="sad">"My GPA was too low so I had to switch majors."
</input>
<input type="radio" name="vidtheysay3" id="scared"

49

value="scared" >"I hated that frightening monster on screen."
</input>
</div>
</div>
</br>
</br>
<div class="question_box" style="text-align:center"><h3
class="h3">What might this girl say?</h3>
</br>
</br>

<div style="text-align:center">
<video id="happy_sound_vid" loop autoplay>

<source src = "http://res.cloudinary.com/lizziepika/video/upload/
c_scale,h_317,w_190/v1520373561/happysoundvid.mp4"
type=’video/mp4’></video>
</br>
</br>
<input type="radio" name="vidtheysay4" id="sad"
value="sad">"Ugh, I don’t have enough money to go see Beyonce."
</input>
<input type="radio" name="vidtheysay4" id="angry"
value="angry">"That man pushed me down!"</input>
<input type="radio" name="vidtheysay4" id="happy"
value="happy">"Nice to see you, my friend."</input>
<input type="radio" name="vidtheysay4" id="scared"
value="scared">"I need to sleep with the light on after
reading that news article."</input>
</div>
</div>
</br>
</br>
<div class="question_box" style="text-align:center"><h3 class="h3">
What might this girl say?</h3>
</br>
</br>
<div style="text-align:center">
<video id="sad_sound_vid" loop autoplay>
<source src = "http://res.cloudinary.com/lizziepika/video/upload/
c_scale,h_317,w_190/v1520373535/sadsoundvid.mp4" type=’video/mp4’>
</video>
</br>

50

</br>
<input type="radio" name="vidtheysay5" id="disgusted"
value="disgusted">"OH MY GOSH he ate cake that had an ant on it."
</input>
<input type="radio" name="vidtheysay5" id="sad"
value="sad">"I wanted to win so badly."</input>
<input type="radio" name="vidtheysay5" id="scared"
value="scared">"I thought I heard a creepy sound."</input>
<input type="radio" name="vidtheysay5" id="happy"
value="happy">"I just set a new personal record for the mile!"
</input>
</div>
</div>
</br>
</br>
<div class="question_box" style="text-align:center"><h3 class="h3">
What might this girl say?</h3>
</br>
</br>
<div style="text-align:center">

<video id="scared_sound_vid" loop autoplay>
<source src = "http://res.cloudinary.com/lizziepika/video/
upload/c_scale,eo_3.5,h_317,w_190/v1520373569/scaredsoundvid.mp4"
type=’video/mp4’>

</video>
</br>
</br>
<input type="radio" name="vidtheysay6" id="sad"
value="sad">"I just missed seeing my favorite movie."</input>
<input type="radio" name="vidtheysay6" id="happy"
value="happy">"My aunt sent a care package."</input>
<input type="radio" name="vidtheysay6" id="disgusted"
value="disgusted">"I can’t believe I was that silly and did that..."
</input>
<input type="radio" name="vidtheysay6" id="angry"
value="angry">"I’m so frustrated with how I played the other day,
I made so many mistakes to make us lose."</input>
</div>
</div>
</br>
</br>

51

<div style="text-align:center"><input type = "submit" value =
"send" id = "submitJson" onclick="returnJsonTop();"></div>
</form>
<script>
var database= firebase.database();
var ref = firebase.database().ref();
var qv1 = $(’input[name=vidtheysay1]:checked’).val();
var qv2 = $(’input[name=vidtheysay2]:checked’).val();
var qv3 = $(’input[name=vidtheysay3]:checked’).val();
var qv4 = $(’input[name=vidtheysay4]:checked’).val();
var qv5 = $(’input[name=vidtheysay5]:checked’).val();
var qv6 = $(’input[name=vidtheysay6]:checked’).val();
var they_say_vid_arr = [qv1, qv2, qv3, qv4, qv5, qv6];
var myJsonString = JSON.stringify(they_say_vid_arr);
function returnJsonTop(){

if(!$(’input[name=vidtheysay1]:checked’).length) {
alert("Please answer question 1");

}
else if(!$(’input[name=vidtheysay2]:checked’).length) {

alert("Please answer question 2");
}
else if (!$(’input[name=vidtheysay3]:checked’).length) {

alert("Please answer question 3");
}
else if (!$(’input[name=vidtheysay4]:checked’).length) {

alert("Please answer question 4");
}
else if (!$(’input[name=vidtheysay5]:checked’).length) {

alert("Please answer question 5");
}
else if (!$(’input[name=vidtheysay6]:checked’).length) {

alert("Please answer question 6");
}

else {
$.ajax({
method: ’POST’,
url: ’/django_project/json/’,
dataType: ’json’,
data: myJsonString

});
//writeUserData();

52

//window.location =
}

}
function writeUserData(userId, name) {

firebase.database().ref(’users/’ + userId).set({
username: name,
answers: myJsonString

});
}
</script>
</body>
{% endblock %}

53

APPENDIX J

SWIFT RESULT
VIEWCONTROLLER

import UIKit
import SwiftCharts
import Alamofire
import SwiftGifOrigin

class Q1ResultsViewController: UIViewController {
@IBOutlet var imgView: UIImageView!
var selectedName = ""
weak var delegate: QuestionOneViewController!

override func viewDidLoad() {
super.viewDidLoad()
self.navigationController?.isToolbarHidden = false
var yval: Double = 0
if selectedName == "correct" {

yval = 20
self.imgView.image = UIImage.gif(url:
"https://media.giphy.com/media/aQYR1p8saOQla/
giphy.gif")

}
else if selectedName == "false" {

yval = 0
self.imgView.image = UIImage.gif(url:

54

"https://media.giphy.com/media/10tIjpzIu8fe0/
giphy.gif")

}
let chartConfig = BarsChartConfig(

valsAxisConfig: ChartAxisConfig(from: 0, to: 8,
by: 2)

)

let chart = BarsChart(
frame: CGRect.init(x: 0, y: 20, width: 300,
height: 100),
chartConfig: chartConfig,
xTitle: "X axis",
yTitle: "Y axis",
bars: [

("A", yval),
],
color: UIColor.red,
barWidth: 20

)
self.view.addSubview(chart.view)

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()

}
}

55

APPENDIX K

FIREBASE DATABASE

Answers for each web app saved to Firebase

56

APPENDIX L

SWIFT QUESTION
VIEWCONTROLLER

import Foundation
import UIKit
import FirebaseDatabase
import Firebase

class QuestionOneViewController: UIViewController {
var selectedName: String? = ""
var toPass: String = ""

@IBOutlet var q1img: UIImageView!
let w = UIScreen.main.bounds.width
let h = UIScreen.main.bounds.height

override func viewDidLoad() {
super.viewDidLoad()

//img
q1img.frame.origin.x = 0
q1img.frame.origin.y = 0
q1img.frame.size.width = w
q1img.frame.size.height = h/3

57

//question label
let qlabel = UILabel(frame: CGRect(x: w/2-((w-10)/2),
y: h/2-100, width: w-10, height: h/10))
qlabel.textAlignment = .center
qlabel.text = "What emotion is this person feeling?"
self.view.addSubview(qlabel)

//button1
let button1 = UIButton(frame: CGRect(x: w/8, y:h/2+10,
width: w/4, height: 25))
button1.tag = 1
button1.backgroundColor = UIColor.gray
button1.addTarget(self, action: #selector
(pressButton(_:)),
for: .touchUpInside)
button1.setTitle("happy", for: UIControlState.normal)
button1.addTarget(self, action:
#selector(QuestionOneViewController.buttonClicked(_:)),
for: UIControlEvents.touchUpInside);
button1.addTarget(self, action:
#selector(QuestionOneViewController.buttonReleased(_:)),
for: UIControlEvents.touchDown)
self.view.addSubview(button1)

//button2
let button2 = UIButton(frame: CGRect(x: w/2+w/10,
y:h/2+10, width:w/5, height:25))
button2.tag = 2
button2.backgroundColor = UIColor.gray
button2.addTarget(self, action:
#selector(pressButton(_:)), for: .touchUpInside)
button2.setTitle("sad", for: UIControlState.normal)
button2.addTarget(self, action:
#selector(QuestionOneViewController.buttonClicked(_:)),
for: UIControlEvents.touchUpInside);
button2.addTarget(self, action:
#selector(QuestionOneViewController.buttonReleased(_:)),
for: UIControlEvents.touchDown)
self.view.addSubview(button2)

//button3

58

let button3 = UIButton(frame: CGRect(x: w/8,
y: h/2+100, width: w/5, height: 25))
button3.tag = 3
button3.backgroundColor = UIColor.gray
button3.addTarget(self, action:
#selector(pressButton(_:)), for: .touchUpInside)
button3.setTitle("angry", for: UIControlState.normal)
button3.addTarget(self, action:
#selector(QuestionOneViewController.buttonClicked(_:)),
for: UIControlEvents.touchUpInside);
button3.addTarget(self, action:
#selector(QuestionOneViewController.buttonReleased(_:)),
for: UIControlEvents.touchDown)
self.view.addSubview(button3)

//button4
let button4 = UIButton(frame: CGRect(x: w/2+w/10, y: h/2
+100, width: w/5, height:25))
button4.tag = 4
button4.backgroundColor = UIColor.gray
button4.addTarget(self, action: #selector(pressButton(_:)),
for: .touchUpInside)
button4.setTitle("scared", for: UIControlState.normal)
button4.addTarget(self, action:
#selector(QuestionOneViewController.buttonClicked(_:)),
for: UIControlEvents.touchUpInside);
button4.addTarget(self, action:
#selector(QuestionOneViewController.buttonReleased(_:)),
for: UIControlEvents.touchDown)
self.view.addSubview(button4)

//submit button
let submitButton = UIButton(frame: CGRect(x: w/3 + 10,
y: 7.5*h/10, width: w/5, height: 25))
submitButton.backgroundColor = .purple
submitButton.setTitle("Submit", for: UIControlState
.normal)
submitButton.addTarget(self, action:
#selector(nextQuestion(_:)), for: .touchUpInside)
self.view.addSubview(submitButton)

}

59

func deselectAllButtons(){
for subView in view.subviews {

// Set all the other buttons as normal state
if let button = subView as? UIButton {

button.isSelected = false
if !button.isSelected {

button.backgroundColor = UIColor.gray
}

else {
button.backgroundColor = UIColor.blue

}
}

}
view.subviews.forEach {($0 as? UIButton)?.isSelected
= false }

*/
}

//target functions
@objc func buttonClicked(_ button: UIButton) {

button.backgroundColor = UIColor.blue
}

@objc func buttonReleased(_ button: UIButton) {
button.backgroundColor = UIColor.gray

}

@objc func pressButton(_ button: UIButton) {
button.isSelected = true
if button.isSelected {

button.setTitleColor(UIColor.red, for: .selected)
deselectAllButtons()
var ref: DatabaseReference!
ref = Database.database().reference()
ref?.child("ios_guess_emotions").
childByAutoId().setValue(["question 1": button.tag])

if button.tag == 1 {
toPass = "correct"

60

}
else {

toPass = "false"
}

}
else {
button.setTitleColor(UIColor.red, for: .default)
button.backgroundColor = UIColor.gray

}

}

@objc func nextQuestion(_ button: UIButton) {
//go to next screen programmatically
let myVC = storyboard?.instantiateViewController(
withIdentifier: "Q1ResultsViewController") as!
Q1ResultsViewController
myVC.selectedName = toPass
navigationController?.pushViewController(myVC, animated:
true)

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()

}
}

61

APPENDIX M

FIREBASE IN SWIFT

var ref: DatabaseReference!
ref = Database.database().reference()
ref?.child("ios_guess_emotions").
childByAutoId().setValue(["question
1": button.tag])

62

APPENDIX N

SWIFT PODFILE

target ’thesis_ios’ do
use_frameworks!

pod ’Firebase’
pod ’Firebase/Core’
pod ’Firebase/Database’
pod ’Firebase/Auth’
pod ’SwiftCharts’, :git => ’https://github.com/i-schuetz/
SwiftCharts.git’
pod ’SwiftGifOrigin’, âĂŸ~> 1.6.1âĂŹ
pod ’Alamofire’

end

63

BIBLIOGRAPHY

[1] Connie Anderson. “Redefinition: Autism, Asperger’s, and the DSM-5”. In:
Interactive Autism Network (2012). DOI: https://iancommunity.
org/cs/simons_simplex_community/dsm5_and_asd.

[2] “Assessment of Social Skills for Students with Asperger Syndrome and
High-Functioning Autism”. In: Sage Journal (). DOI: http://journals.
sagepub.com/doi/pdf/10.1177/07372477020270011.

[3] Avokiddo Emotions. http://avokiddo.com/apps/avokiddo-emotions-app/. (Vis-
ited on 02/17/2018).

[4] Jed Baker. Social Skills Picture Book. Future Horizons, 2001. ISBN: 1885477910.

[5] Jed Baker. Social Skills Picture Book for High School and Beyond. Future
Horizons, 2006. ISBN: 9781932565355.

[6] Bootstrap Get Started. https://www.w3schools.com/bootstrap/bootstrap_get_started.asp/.
(Visited on 02/17/2018).

[7] Lois Jean Brady. Apps for Autism - an Essential Guide to Over 200 Effective
Apps for Improving Communication, Behavior, Social Skills, and More!
Future Horizons, 1996. ISBN: 9781935274490.

[8] Pamela J. Crooke, Ryan E. Hendrix, and Janine Y. Rachman. “Brief Re-
port: measuring the effectiveness of teaching social thinking to children
with Asperger syndrome (AS) and High Functioning Autism (HFA).” In:
Journal of Autism and Developmental Disorders (). DOI: https://link.
springer.com/content/pdf/10.1007/s10803-007-0466-
1.pdf. (Visited on 02/11/2018).

[9] Development of Emotion Recognition in Individuals with Autism. (Visited
on 03/24/2018).

64

https://doi.org/https://iancommunity.org/cs/simons_simplex_community/dsm5_and_asd
https://doi.org/https://iancommunity.org/cs/simons_simplex_community/dsm5_and_asd
https://doi.org/http://journals.sagepub.com/doi/pdf/10.1177/07372477020270011
https://doi.org/http://journals.sagepub.com/doi/pdf/10.1177/07372477020270011
https://doi.org/https://link.springer.com/content/pdf/10.1007/s10803-007-0466-1.pdf
https://doi.org/https://link.springer.com/content/pdf/10.1007/s10803-007-0466-1.pdf
https://doi.org/https://link.springer.com/content/pdf/10.1007/s10803-007-0466-1.pdf

[10] Diagnostic and Statistical Manual of Mental Disorders. (Visited on 03/24/2018).

[11] Digital Ocean Droplets. https://www.digitalocean.com/community/tutorials/how-
to-create-your-first-digitalocean-droplet. (Visited on 02/17/2018).

[12] Marshall P. Duke, Stephen Nowicki Jr, and Elisabeth A. Martin. Teaching
Your Child the Language of Social Success. Peachtree Publishers, 1996.
ISBN: 1561451266.

[13] emotionary+ by Funny Feelings. https://itunes.apple.com/us/app/emotionary-
+-by-funny-feelings/id498649064?mt=8. (Visited on 02/17/2018).

[14] Firebase Realtime Database. https://firebase.google.com/products/realtime-
database. (Visited on 02/17/2018).

[15] Michelle Garcia Winner and Michelle Crooke. Socially Curious and Cu-
riously Social-A Social Thinking Guidebook for Bright Teens and Young
Adults. Think Social Publishing, 2011. ISBN: 9780884272021.

[16] L. Johnson, S. Adams, and M. Cummins. “NMC Horizon Report: 2012
Higher Education Edition”. In: The New Media Consortium Report (2012).
DOI: https://files.eric.ed.gov/fulltext/ED532397.
pdf.

[17] jQuery. https://jquery.com/. (Visited on 02/17/2018).

[18] Don Norman. Design of Everyday Things. Basic Books, 1988. ISBN: 9780465067107.

[19] Scott Olmsted. “Step by step setup to send form data to Google Sheets”. In:
Rails Rescue (2015). DOI: http://railsrescue.com/blog/2015-
05-28-step-by-step-setup-to-send-form-data-to-
google-sheets/.

[20] StackOverflow. “Stack Overflow Developer Survey Results 2018”. In: (2018).

[21] Stanbridge Academy. www.stanbridgeacademy.org. (Visited on
02/17/2018).

[22] SwiftCharts. (Visited on 04/25/2018).

[23] The Body and the Emotions: Anger, Disgust and Contempt. (Visited on
04/17/2018).

[24] Touch and Learn-Emotions. https://itunes.apple.com/us/app/touch-and-learn-
emotions/id451685022?platform=ipadpreserveScrollPosition=trueplatform/ipad.
(Visited on 02/17/2018).

65

https://doi.org/https://files.eric.ed.gov/fulltext/ED532397.pdf
https://doi.org/https://files.eric.ed.gov/fulltext/ED532397.pdf
https://doi.org/http://railsrescue.com/blog/2015-05-28-step-by-step-setup-to-send-form-data-to-google-sheets/
https://doi.org/http://railsrescue.com/blog/2015-05-28-step-by-step-setup-to-send-form-data-to-google-sheets/
https://doi.org/http://railsrescue.com/blog/2015-05-28-step-by-step-setup-to-send-form-data-to-google-sheets/
 www.stanbridgeacademy.org

[25] Fred Volkmar et al. “Practice Parameter for the Assessment and Treatment
of Children and Adolescents With Autism Spectrum Disorder”. In: Journal
of the American Academy of Child Adolescent Psychiatry 53 (8 2014). DOI:
http://www.jaacap.com/article/S0890-8567(13)00819-
8/fulltext.

[26] What is autism. (Visited on 04/27/2018).

[27] What is Django. https://tutorial.djangogirls.org/en/django/. (Visited on 02/17/2018).

66

https://doi.org/http://www.jaacap.com/article/S0890-8567(13)00819-8/fulltext
https://doi.org/http://www.jaacap.com/article/S0890-8567(13)00819-8/fulltext

	Introduction
	Motivation
	Solution
	Goals

	Background
	Emotions
	Teaching Social Skills
	Prior Work and Research
	Related Technical Solutions

	Web Application Development
	First Web Application Version
	Current Web Application
	Dynamic Pages and Servers
	Web Application Design
	Serving Static Files in Django
	Additional External APIs

	iOS Application
	Additional APIs
	Data Visualization

	Technical Challenges
	Django
	Database
	Data Visualization

	Testing the Applications
	User Backgrounds
	Hypothesis
	User Testing Results
	Possible Explanations of Results

	Conclusion
	Future Work

	Micro-Expression
	AutismXpress
	Digital Ocean
	Google Form
	Django Form
	Django Login
	Bootstrap in Django Application
	PubNub and Cloudinary in Static Image Web Application Level One

	Guess Thinking level of Video Web application
	Swift Result ViewController
	Firebase Database

	Swift Question ViewController
	Firebase in Swift

	Swift Podfile

